Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Diabetes ; 71(7): 1579-1590, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1834217

RESUMEN

Recent studies have shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may induce metabolic distress, leading to hyperglycemia in patients affected by coronavirus disease 19 (COVID-19). We investigated the potential indirect and direct effects of SARS-CoV-2 on human pancreatic islets in 10 patients who became hyperglycemic after COVID-19. Although there was no evidence of peripheral anti-islet autoimmunity, the serum of these patients displayed toxicity on human pancreatic islets, which could be abrogated by the use of anti-interleukin-1ß (IL-1ß), anti-IL-6, and anti-tumor necrosis factor α, cytokines known to be highly upregulated during COVID-19. Interestingly, the receptors of those aforementioned cytokines were highly expressed on human pancreatic islets. An increase in peripheral unmethylated INS DNA, a marker of cell death, was evident in several patients with COVID-19. Pathology of the pancreas from deceased hyperglycemic patients who had COVID-19 revealed mild lymphocytic infiltration of pancreatic islets and pancreatic lymph nodes. Moreover, SARS-CoV-2-specific viral RNA, along with the presence of several immature insulin granules or proinsulin, was detected in postmortem pancreatic tissues, suggestive of ß-cell-altered proinsulin processing, as well as ß-cell degeneration and hyperstimulation. These data demonstrate that SARS-CoV-2 may negatively affect human pancreatic islet function and survival by creating inflammatory conditions, possibly with a direct tropism, which may in turn lead to metabolic abnormalities observed in patients with COVID-19.


Asunto(s)
COVID-19 , Islotes Pancreáticos , COVID-19/complicaciones , Citocinas/metabolismo , Humanos , Hiperglucemia/virología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/virología , Proinsulina/metabolismo , SARS-CoV-2
3.
Nat Metab ; 3(2): 149-165, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1065968

RESUMEN

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Asunto(s)
Islotes Pancreáticos/virología , SARS-CoV-2/crecimiento & desarrollo , Anciano , Anciano de 80 o más Años , Enzima Convertidora de Angiotensina 2/biosíntesis , Enzima Convertidora de Angiotensina 2/genética , COVID-19/fisiopatología , Células Cultivadas , Diabetes Mellitus , Femenino , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiopatología , Masculino , Páncreas Exocrino/citología , Páncreas Exocrino/fisiopatología , Páncreas Exocrino/virología , Enfermedades Pancreáticas/etiología , Enfermedades Pancreáticas/virología , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/genética , Internalización del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA